

Welcome to vuk’s documentation!

Quickstart

	Grab the vuk repository

	Compile the examples

	Run the example browser and get a feel for the library:

git clone http://github.com/martty/vuk
cd vuk
git submodule init
git submodule update --recursive
mkdir build
cd build
mkdir debug
cd debug
cmake ../.. -G Ninja
cmake --build .
./vuk_all_examples

(if building with a multi-config generator, do not make the debug folder)

Topics:

	Context

	Submitting work

	Allocators
	Overview

	Built-in resources

	Helpers

	Reference

	Rendergraph

	Futures

	Composing render graphs

	CommandBuffer
	Setting pipeline state

	Static and dynamic state

	Binding pipelines & specialization constants

	Binding descriptors & push constants

	Vertex buffers and attributes

	Command recording

	Error handling

Background

vuk was initially conceived based on the rendergraph articles of themaister (https://themaister.net/blog/2017/08/15/render-graphs-and-vulkan-a-deep-dive/). In essence the idea is to describe work undertaken during a frame in advance in a high level manner, then the library takes care of low-level details, such as insertion of synchronization (barriers) and managing resource states (image layouts). This over time evolved to a somewhat complete Vulkan runtime - you can use the facilities afforded by vuk’s runtime without even using the rendergraph part. The runtime presents a more easily approachable interface to Vulkan, abstracting over common pain points of pipeline management, state setting and descriptors. The rendergraph part has grown to become more powerful than simple ‘autosync’ abstraction - it allows expressing complex dependencies via vuk::Future and allows powerful optimisation opportunities for the backend (even if those are to be implemented).

Alltogether vuk presents a vision of GPU development that embraces compilation - the idea that knowledge about optimisation of programs can be encoded into to tools (compilers) and this way can be insitutionalised, which allows a broader range of programs and programmers to take advantage of these. The future developments will focus on this backend(Vulkan, DX12, etc.)-agnostic form of representing graphics programs and their optimisation.

As such vuk is in active development, and will change in API and behaviour as we better understand the shape of the problem. With that being said, vuk is already usable to base projects off of - with the occasional refactoring. For support or feedback, please join the Discord server or use Github issues - we would be very happy to hear your thoughts!

Indices and tables

	Index

Context

The Context represents the base object of the runtime, encapsulating the knowledge about the GPU (similar to a VkDevice).
Use this class to manage pipelines and other cached objects, add/remove swapchains, manage persistent descriptor sets, submit work to device and retrieve query results.

	
struct ContextCreateParameters

	Parameters used for creating a Context.

Public Members

	
VkInstance instance

	Vulkan instance.

	
VkDevice device

	Vulkan device.

	
VkPhysicalDevice physical_device

	Vulkan physical device.

	
VkQueue graphics_queue = VK_NULL_HANDLE

	Optional graphics queue.

	
uint32_t graphics_queue_family_index = VK_QUEUE_FAMILY_IGNORED

	Optional graphics queue family index.

	
VkQueue compute_queue = VK_NULL_HANDLE

	Optional compute queue.

	
uint32_t compute_queue_family_index = VK_QUEUE_FAMILY_IGNORED

	Optional compute queue family index.

	
VkQueue transfer_queue = VK_NULL_HANDLE

	Optional transfer queue.

	
uint32_t transfer_queue_family_index = VK_QUEUE_FAMILY_IGNORED

	Optional transfer queue family index.

	
bool allow_dynamic_loading_of_vk_function_pointers = true

	Allow vuk to load missing required and optional function pointers dynamically If this is false, then you must fill in all required function pointers.

	
struct FunctionPointers

	User provided function pointers. If you want dynamic loading, you must set vkGetInstanceProcAddr & vkGetDeviceProcAddr.

Subclassed by vuk::Context

	
class Context : public vuk::ContextCreateParameters::FunctionPointers

	
Public Functions

	
Context(ContextCreateParameters params)

	Create a new Context.

	Parameters:

	params – Vulkan parameters initialized beforehand

	
bool debug_enabled() const

	If debug utils is available and debug names & markers are supported.

	
void set_name(const Texture&, Name name)

	Set debug name for Texture.

	
template<class T>
void set_name(const T &t, Name name)

	Set debug name for object.

	
void begin_region(const VkCommandBuffer&, Name name, std::array<float, 4> color = {1, 1, 1, 1})

	Add debug region to command buffer.

	Parameters:

	
	name – Name of the region

	color – Display color of the region

	
void end_region(const VkCommandBuffer&)

	End debug region in command buffer.

	
void create_named_pipeline(Name name, PipelineBaseCreateInfo pbci)

	Create a pipeline base that can be recalled by name.

	
PipelineBaseInfo *get_named_pipeline(Name name)

	Recall name pipeline base.

	
Program get_pipeline_reflection_info(const PipelineBaseCreateInfo &pbci)

	Reflect given pipeline base.

	
ShaderModule compile_shader(ShaderSource source, std::string path)

	Explicitly compile give ShaderSource into a ShaderModule.

	
bool load_pipeline_cache(std::span<std::byte> data)

	Load a Vulkan pipeline cache.

	
std::vector<std::byte> save_pipeline_cache()

	Retrieve the current Vulkan pipeline cache.

	
DeviceVkResource &get_vk_resource()

	Return an allocator over the direct resource - resources will be allocated from the Vulkan runtime.

	Returns:

	The resource

	
SwapchainRef add_swapchain(Swapchain)

	Add a swapchain to be managed by the Context.

	Returns:

	Reference to the new swapchain that can be used during presentation

	
void remove_swapchain(SwapchainRef)

	Remove a swapchain that is managed by the Context the swapchain is not destroyed.

	
uint64_t get_frame_count() const

	Retrieve the current frame count.

	
void next_frame()

	Advance internal counter used for caching and garbage collect caches.

	
Result<void> wait_idle()

	Wait for the device to become idle. Useful for only a few synchronisation events, like resizing or shutting down.

	
Query create_timestamp_query()

	Create a timestamp query to record timing information.

	
bool is_timestamp_available(Query q)

	Checks if a timestamp query is available.

	Parameters:

	q – the Query to check

	Returns:

	true if the timestamp is available

	
std::optional<uint64_t> retrieve_timestamp(Query q)

	Retrieve a timestamp if available.

	Parameters:

	q – the Query to check

	Returns:

	the timestamp value if it was available, null optional otherwise

	
std::optional<double> retrieve_duration(Query q1, Query q2)

	Retrive a duration if available.

	Parameters:

	
	q1 – the start timestamp Query

	q2 – the end timestamp Query

	Returns:

	the duration in seconds if both timestamps were available, null optional otherwise

	
Result<void> make_timestamp_results_available(std::span<const TimestampQueryPool> pools)

	Retrieve results from TimestampQueryPools and make them available to retrieve_timestamp and retrieve_duration.

	
Sampler acquire_sampler(const SamplerCreateInfo &cu, uint64_t absolute_frame)

	Acquire a cached sampler.

	
struct DescriptorPool &acquire_descriptor_pool(const struct DescriptorSetLayoutAllocInfo &dslai, uint64_t absolute_frame)

	Acquire a cached descriptor pool.

	
void collect(uint64_t frame)

	Force collection of caches.

	
uint64_t get_unique_handle_id()

	Retrieve a unique uint64_t value.

	
template<class T>
Handle<T> wrap(T payload)

	Create a wrapped handle type (eg. a ImageView) from an externally sourced Vulkan handle.

	Template Parameters:

	T – Vulkan handle type to wrap

	Parameters:

	payload – Vulkan handle to wrap

	Returns:

	The wrapped handle.

Public Members

	
VkPipelineCache vk_pipeline_cache = VK_NULL_HANDLE

	Internal pipeline cache to use.

	
DescriptorSetStrategyFlags default_descriptor_set_strategy = {}

	Descriptor set strategy to use by default, can be overridden on the CommandBuffer.

	
struct Query

	Handle to a query result.

Submitting work

While submitting work to the device can be performed by the user, it is usually sufficient to use a utility function that takes care of translating a RenderGraph into device execution. Note that these functions are used internally when using :cpp:class:`vuk::Future`s, and as such Futures can be used to manage submission in a more high-level fashion.

	
Result<VkResult> vuk::execute_submit_and_present_to_one(Allocator &allocator, ExecutableRenderGraph &&executable_rendergraph, SwapchainRef swapchain)

	Execute given ExecutableRenderGraph into API VkCommandBuffers, then submit them to queues, presenting to a single swapchain.

	Parameters:

	
	allocator – Allocator to use for submission resources

	executable_rendergraph – ExecutableRenderGraphs for execution

	swapchain – Swapchain referenced by the rendergraph

	
Result<void> vuk::execute_submit_and_wait(Allocator &allocator, ExecutableRenderGraph &&executable_rendergraph)

	Execute given ExecutableRenderGraph into API VkCommandBuffers, then submit them to queues, then blocking-wait for the submission to complete.

	Parameters:

	
	allocator – Allocator to use for submission resources

	executable_rendergraph – ExecutableRenderGraphs for execution

	
Result<void> vuk::link_execute_submit(Allocator &allocator, Compiler &compiler, std::span<std::shared_ptr<struct RenderGraph>> rendergraphs)

	Compile & link given RenderGraphs, then execute them into API VkCommandBuffers, then submit them to queues.

	Parameters:

	
	allocator – Allocator to use for submission resources

	rendergraphs – RenderGraphs for compilation

Allocators

Management of GPU resources is an important part of any renderer. vuk provides an API that lets you plug in your allocation schemes, complementing built-in general purpose schemes that get you started and give good performance out of the box.

Overview

	
class Allocator

	Interface for allocating device resources.

The Allocator is a concrete value type wrapping over a polymorphic DeviceResource, forwarding allocations and deallocations to it. The allocation functions take spans of creation parameters and output values, reporting error through the return value of Result<void, AllocateException>. The deallocation functions can’t fail.

	
struct DeviceResource

	DeviceResource is a polymorphic interface over allocation of GPU resources. A DeviceResource must prevent reuse of cross-device resources after deallocation until CPU-GPU timelines are synchronized. GPU-only resources may be reused immediately.

Subclassed by vuk::DeviceNestedResource, vuk::DeviceVkResource

To facilitate ownership, a RAII wrapper type is provided, that wraps an Allocator and a payload:

	
template<typename Type>
class Unique

	

Built-in resources

	
struct DeviceNestedResource : public vuk::DeviceResource

	Helper base class for DeviceResources. Forwards all allocations and deallocations to the upstream DeviceResource.

Subclassed by vuk::DeviceFrameResource, vuk::DeviceLinearResource, vuk::DeviceSuperFrameResource

	
struct DeviceVkResource : public vuk::DeviceResource

	Device resource that performs direct allocation from the resources from the Vulkan runtime.

	
struct DeviceFrameResource : public vuk::DeviceNestedResource

	Represents “per-frame” resources - temporary allocations that persist through a frame. Handed out by DeviceSuperFrameResource, cannot be constructed directly.

Allocations from this resource are tied to the “frame” - all allocations recycled when a DeviceFrameResource is recycled. Furthermore all resources allocated are also deallocated at recycle time - it is not necessary (but not an error) to deallocate them.

Subclassed by vuk::DeviceMultiFrameResource

	
struct DeviceSuperFrameResource : public vuk::DeviceNestedResource

	DeviceSuperFrameResource is an allocator that gives out DeviceFrameResource allocators, and manages their resources.

DeviceSuperFrameResource models resource lifetimes that span multiple frames - these can be allocated directly from this resource Allocation of these resources are persistent, and they can be deallocated at any time - they will be recycled when the current frame is recycled This resource also hands out DeviceFrameResources in a round-robin fashion. The lifetime of resources allocated from those allocators is frames_in_flight number of frames (until the DeviceFrameResource is recycled).

Helpers

Allocator provides functions that can perform bulk allocation (to reduce overhead for repeated calls) and return resources directly. However, usually it is more convenient to allocate a single resource and immediately put it into a RAII wrapper to prevent forgetting to deallocate it.

	
namespace vuk

	
Functions

	
inline Result<Unique<VkSemaphore>, AllocateException> allocate_semaphore(Allocator &allocator, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single semaphore from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	loc – Source location information

	Returns:

	Semaphore in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<TimelineSemaphore>, AllocateException> allocate_timeline_semaphore(Allocator &allocator, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single timeline semaphore from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	loc – Source location information

	Returns:

	Timeline semaphore in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<CommandPool>, AllocateException> allocate_command_pool(Allocator &allocator, const VkCommandPoolCreateInfo &cpci, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single command pool from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	cpci – Command pool creation parameters

	loc – Source location information

	Returns:

	Command pool in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<CommandBufferAllocation>, AllocateException> allocate_command_buffer(Allocator &allocator, const CommandBufferAllocationCreateInfo &cbci, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single command buffer from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	cbci – Command buffer creation parameters

	loc – Source location information

	Returns:

	Command buffer in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<VkFence>, AllocateException> allocate_fence(Allocator &allocator, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single fence from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	loc – Source location information

	Returns:

	Fence in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<Buffer>, AllocateException> allocate_buffer(Allocator &allocator, const BufferCreateInfo &bci, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single GPU-only buffer from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	bci – Buffer creation parameters

	loc – Source location information

	Returns:

	GPU-only buffer in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<Image>, AllocateException> allocate_image(Allocator &allocator, const ImageCreateInfo &ici, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single image from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	ici – Image creation parameters

	loc – Source location information

	Returns:

	Image in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<Image>, AllocateException> allocate_image(Allocator &allocator, const ImageAttachment &attachment, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single image from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	attachment – ImageAttachment to make the Image from

	loc – Source location information

	Returns:

	Image in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<ImageView>, AllocateException> allocate_image_view(Allocator &allocator, const ImageViewCreateInfo &ivci, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single image view from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	ivci – Image view creation parameters

	loc – Source location information

	Returns:

	ImageView in a RAII wrapper (Unique<T>) or AllocateException on error

	
inline Result<Unique<ImageView>, AllocateException> allocate_image_view(Allocator &allocator, const ImageAttachment &attachment, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate a single image view from an Allocator.

	Parameters:

	
	allocator – Allocator to use

	attachment – ImageAttachment to make the ImageView from

	loc – Source location information

	Returns:

	ImageView in a RAII wrapper (Unique<T>) or AllocateException on error

Reference

	
class Allocator

	Interface for allocating device resources.

The Allocator is a concrete value type wrapping over a polymorphic DeviceResource, forwarding allocations and deallocations to it. The allocation functions take spans of creation parameters and output values, reporting error through the return value of Result<void, AllocateException>. The deallocation functions can’t fail.

Public Functions

	
inline explicit Allocator(DeviceResource &device_resource)

	Create new Allocator that wraps a DeviceResource.

	Parameters:

	device_resource – The DeviceResource to allocate from

	
Result<void, AllocateException> allocate(std::span<VkSemaphore> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate semaphores from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated semaphores into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_semaphores(std::span<VkSemaphore> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate semaphores from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated semaphores into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const VkSemaphore> src)

	Deallocate semaphores previously allocated from this Allocator.

	Parameters:

	src – Span of semaphores to be deallocated

	
Result<void, AllocateException> allocate(std::span<VkFence> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate fences from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated fences into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_fences(std::span<VkFence> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate fences from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated fences into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const VkFence> src)

	Deallocate fences previously allocated from this Allocator.

	Parameters:

	src – Span of fences to be deallocated

	
Result<void, AllocateException> allocate(std::span<CommandPool> dst, std::span<const VkCommandPoolCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate command pools from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated command pools into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_command_pools(std::span<CommandPool> dst, std::span<const VkCommandPoolCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate command pools from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated command pools into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const CommandPool> src)

	Deallocate command pools previously allocated from this Allocator.

	Parameters:

	src – Span of command pools to be deallocated

	
Result<void, AllocateException> allocate(std::span<CommandBufferAllocation> dst, std::span<const CommandBufferAllocationCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate command buffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated command buffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_command_buffers(std::span<CommandBufferAllocation> dst, std::span<const CommandBufferAllocationCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate command buffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated command buffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const CommandBufferAllocation> src)

	Deallocate command buffers previously allocated from this Allocator.

	Parameters:

	src – Span of command buffers to be deallocated

	
Result<void, AllocateException> allocate(std::span<Buffer> dst, std::span<const BufferCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate buffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated buffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_buffers(std::span<Buffer> dst, std::span<const BufferCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate buffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated buffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const Buffer> src)

	Deallocate buffers previously allocated from this Allocator.

	Parameters:

	src – Span of buffers to be deallocated

	
Result<void, AllocateException> allocate(std::span<VkFramebuffer> dst, std::span<const FramebufferCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate framebuffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated framebuffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_framebuffers(std::span<VkFramebuffer> dst, std::span<const FramebufferCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate framebuffers from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated framebuffers into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const VkFramebuffer> src)

	Deallocate framebuffers previously allocated from this Allocator.

	Parameters:

	src – Span of framebuffers to be deallocated

	
Result<void, AllocateException> allocate(std::span<Image> dst, std::span<const ImageCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate images from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated images into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_images(std::span<Image> dst, std::span<const ImageCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate images from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated images into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const Image> src)

	Deallocate images previously allocated from this Allocator.

	Parameters:

	src – Span of images to be deallocated

	
Result<void, AllocateException> allocate(std::span<ImageView> dst, std::span<const ImageViewCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate image views from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated image views into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_image_views(std::span<ImageView> dst, std::span<const ImageViewCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate image views from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated image views into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const ImageView> src)

	Deallocate image views previously allocated from this Allocator.

	Parameters:

	src – Span of image views to be deallocated

	
Result<void, AllocateException> allocate(std::span<PersistentDescriptorSet> dst, std::span<const PersistentDescriptorSetCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate persistent descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated persistent descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_persistent_descriptor_sets(std::span<PersistentDescriptorSet> dst, std::span<const PersistentDescriptorSetCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate persistent descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated persistent descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const PersistentDescriptorSet> src)

	Deallocate persistent descriptor sets previously allocated from this Allocator.

	Parameters:

	src – Span of persistent descriptor sets to be deallocated

	
Result<void, AllocateException> allocate(std::span<DescriptorSet> dst, std::span<const SetBinding> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_descriptor_sets_with_value(std::span<DescriptorSet> dst, std::span<const SetBinding> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate(std::span<DescriptorSet> dst, std::span<const DescriptorSetLayoutAllocInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_descriptor_sets(std::span<DescriptorSet> dst, std::span<const DescriptorSetLayoutAllocInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate descriptor sets from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated descriptor sets into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const DescriptorSet> src)

	Deallocate descriptor sets previously allocated from this Allocator.

	Parameters:

	src – Span of descriptor sets to be deallocated

	
Result<void, AllocateException> allocate(std::span<TimestampQueryPool> dst, std::span<const VkQueryPoolCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timestamp query pools from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timestamp query pools into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_timestamp_query_pools(std::span<TimestampQueryPool> dst, std::span<const VkQueryPoolCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timestamp query pools from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timestamp query pools into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const TimestampQueryPool> src)

	Deallocate timestamp query pools previously allocated from this Allocator.

	Parameters:

	src – Span of timestamp query pools to be deallocated

	
Result<void, AllocateException> allocate(std::span<TimestampQuery> dst, std::span<const TimestampQueryCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timestamp queries from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timestamp queries into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_timestamp_queries(std::span<TimestampQuery> dst, std::span<const TimestampQueryCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timestamp queries from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timestamp queries into

	cis – Per-element construction info

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const TimestampQuery> src)

	Deallocate timestamp queries previously allocated from this Allocator.

	Parameters:

	src – Span of timestamp queries to be deallocated

	
Result<void, AllocateException> allocate(std::span<TimelineSemaphore> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timeline semaphores from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timeline semaphores into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_timeline_semaphores(std::span<TimelineSemaphore> dst, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate timeline semaphores from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated timeline semaphores into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const TimelineSemaphore> src)

	Deallocate timeline semaphores previously allocated from this Allocator.

	Parameters:

	src – Span of timeline semaphores to be deallocated

	
Result<void, AllocateException> allocate(std::span<VkAccelerationStructureKHR> dst, std::span<const VkAccelerationStructureCreateInfoKHR> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate acceleration structures from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated acceleration structures into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_acceleration_structures(std::span<VkAccelerationStructureKHR> dst, std::span<const VkAccelerationStructureCreateInfoKHR> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate acceleration structures from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated acceleration structures into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const VkAccelerationStructureKHR> src)

	Deallocate acceleration structures previously allocated from this Allocator.

	Parameters:

	src – Span of acceleration structures to be deallocated

	
void deallocate(std::span<const VkSwapchainKHR> src)

	Deallocate swapchains previously allocated from this Allocator.

	Parameters:

	src – Span of swapchains to be deallocated

	
Result<void, AllocateException> allocate(std::span<GraphicsPipelineInfo> dst, std::span<const GraphicsPipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate graphics pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_graphics_pipelines(std::span<GraphicsPipelineInfo> dst, std::span<const GraphicsPipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate graphics pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const GraphicsPipelineInfo> src)

	Deallocate pipelines previously allocated from this Allocator.

	Parameters:

	src – Span of pipelines to be deallocated

	
Result<void, AllocateException> allocate(std::span<ComputePipelineInfo> dst, std::span<const ComputePipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate compute pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_compute_pipelines(std::span<ComputePipelineInfo> dst, std::span<const ComputePipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate compute pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const ComputePipelineInfo> src)

	Deallocate pipelines previously allocated from this Allocator.

	Parameters:

	src – Span of pipelines to be deallocated

	
Result<void, AllocateException> allocate(std::span<RayTracingPipelineInfo> dst, std::span<const RayTracingPipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate ray tracing pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_ray_tracing_pipelines(std::span<RayTracingPipelineInfo> dst, std::span<const RayTracingPipelineInstanceCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate ray tracing pipelines from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated pipelines into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const RayTracingPipelineInfo> src)

	Deallocate pipelines previously allocated from this Allocator.

	Parameters:

	src – Span of pipelines to be deallocated

	
Result<void, AllocateException> allocate(std::span<VkRenderPass> dst, std::span<const RenderPassCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate render passes from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated render passes into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
Result<void, AllocateException> allocate_render_passes(std::span<VkRenderPass> dst, std::span<const RenderPassCreateInfo> cis, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocate render passes from this Allocator.

	Parameters:

	
	dst – Destination span to place allocated render passes into

	loc – Source location information

	Returns:

	Result<void, AllocateException> : void or AllocateException if the allocation could not be performed.

	
void deallocate(std::span<const VkRenderPass> src)

	Deallocate render passes previously allocated from this Allocator.

	Parameters:

	src – Span of render passes to be deallocated

	
inline DeviceResource &get_device_resource()

	Get the underlying DeviceResource.

	Returns:

	the underlying DeviceResource

	
inline Context &get_context()

	Get the parent Context.

	Returns:

	the parent Context

Rendergraph

	
struct Resource

	

	
struct RenderGraph : public std::enable_shared_from_this<RenderGraph>

	
Public Functions

	
void add_pass(Pass pass, source_location location = source_location::current())

	Add a pass to the rendergraph.

	Parameters:

	pass – the Pass to add to the RenderGraph

	
void add_alias(Name new_name, Name old_name)

	Add an alias for a resource.

	Parameters:

	
	new_name – Additional name to refer to the resource

	old_name – Old name used to refere to the resource

	
void diverge_image(Name whole_name, Subrange::Image subrange, Name subrange_name)

	Diverge image. subrange is available as subrange_name afterwards.

	
void converge_image_explicit(std::span<Name> pre_diverge, Name post_diverge)

	Reconverge image from named parts. Prevents diverged use moving before pre_diverge or after post_diverge.

	
void resolve_resource_into(Name resolved_name_src, Name resolved_name_dst, Name ms_name)

	Add a resolve operation from the image resource ms_name that consumes resolved_name_src and produces resolved_name_dst This is only supported for color images.

	Parameters:

	
	resolved_name_src – Image resource name consumed (single-sampled)

	resolved_name_dst – Image resource name created (single-sampled)

	ms_name – Image resource to resolve from (multisampled)

	
void clear_image(Name image_name_in, Name image_name_out, Clear clear_value)

	Clear image attachment.

	Parameters:

	
	image_name_in – Name of the image resource to clear

	image_name_out – Name of the cleared image resource

	clear_value – Value used for the clear

	subrange – Range of image cleared

	
void attach_swapchain(Name name, SwapchainRef swp)

	Attach a swapchain to the given name.

	Parameters:

	name – Name of the resource to attach to

	
void attach_buffer(Name name, Buffer buffer, Access initial = eNone)

	Attach a buffer to the given name.

	Parameters:

	
	name – Name of the resource to attach to

	buffer – Buffer to attach

	initial – Access to the resource prior to this rendergraph

	
void attach_buffer_from_allocator(Name name, Buffer buffer, Allocator allocator, Access initial = eNone)

	Attach a buffer to be allocated from the specified allocator.

	Parameters:

	
	name – Name of the resource to attach to

	buffer – Buffer to attach

	allocator – Allocator the Buffer will be allocated from

	initial – Access to the resource prior to this rendergraph

	
void attach_image(Name name, ImageAttachment image_attachment, Access initial = eNone)

	Attach an image to the given name.

	Parameters:

	
	name – Name of the resource to attach to

	image_attachment – ImageAttachment to attach

	initial – Access to the resource prior to this rendergraph

	
void attach_image_from_allocator(Name name, ImageAttachment image_attachment, Allocator allocator, Access initial = eNone)

	Attach an image to be allocated from the specified allocator.

	Parameters:

	
	name – Name of the resource to attach to

	image_attachment – ImageAttachment to attach

	buffer – Buffer to attach

	initial – Access to the resource prior to this rendergraph

	
void attach_and_clear_image(Name name, ImageAttachment image_attachment, Clear clear_value, Access initial = eNone)

	Attach an image to the given name.

	Parameters:

	
	name – Name of the resource to attach to

	image_attachment – ImageAttachment to attach

	clear_value – Value used for the clear

	initial – Access to the resource prior to this rendergraph

	
void attach_in(Name name, Future future)

	Attach a future to the given name.

	Parameters:

	
	name – Name of the resource to attach to

	future – Future to be attached into this rendergraph

	
void attach_in(std::span<Future> futures)

	Attach multiple futures - the names are matched to future bound names.

	Parameters:

	futures – Futures to be attached into this rendergraph

	
std::vector<Future> split()

	Compute all the unconsumed resource names and return them as Futures.

	
void release(Name name, Access final)

	Mark resources to be released from the rendergraph with future access.

	Parameters:

	
	name – Name of the resource to be released

	final – Access after the rendergraph

	
void release_for_present(Name name)

	Mark resource to be released from the rendergraph for presentation.

	Parameters:

	name – Name of the resource to be released

Public Members

	
Name name

	Name of the rendergraph.

	
struct ExecutableRenderGraph

	

Futures

vuk Futures allow you to reason about computation of resources that happened in the past, or will happen in the future. In general the limitation of RenderGraphs are that they don’t know the state of the resources produces by previous computation, or the state the resources should be left in for future computation, so these states must be provided manually (this is error-prone). Instead you can encapsulate the computation and its result into a Future, which can then serve as an input to other RenderGraphs.

Futures can be constructed from a RenderGraph and a named Resource that is considered to be the output. A Future can optionally own the RenderGraph - but in all cases a Future must outlive the RenderGraph it references.

You can submit Futures manually, which will compile, execute and submit the RenderGraph it references. In this case when you use this Future as input to another RenderGraph it will wait for the result on the device. If a Future has not yet been submitted, the contained RenderGraph is simply appended as a subgraph (i.e. inlined).

It is also possible to wait for the result to be produced to be available on the host - but this forces a CPU-GPU sync and should be used sparingly.

	
class Future

	
Public Functions

	
Future(std::shared_ptr<RenderGraph> rg, Name output_binding, DomainFlags dst_domain = DomainFlagBits::eDevice)

	Create a Future with ownership of a RenderGraph and bind to an output.

	Parameters:

	
	rg –

	output_binding –

	
Future(std::shared_ptr<RenderGraph> rg, QualifiedName output_binding, DomainFlags dst_domain = DomainFlagBits::eDevice)

	Create a Future with ownership of a RenderGraph and bind to an output.

	Parameters:

	
	rg –

	output_binding –

	
inline Future(ImageAttachment value)

	Create a Future from a value, automatically making the result available on the host.

	Parameters:

	value –

	
inline Future(Buffer value)

	Create a Future from a value, automatically making the result available on the host.

	Parameters:

	value –

	
inline FutureBase::Status &get_status()

	Get status of the Future.

	
inline std::shared_ptr<RenderGraph> get_render_graph()

	Get the referenced RenderGraph.

	
Result<void> submit(Allocator &allocator, Compiler &compiler)

	Submit Future for execution.

	
Result<void> wait(Allocator &allocator, Compiler &compiler)

	Wait for Future to complete execution on host.

	
template<class T>
Result<T> get(Allocator &allocator, Compiler &compiler)

	Wait and retrieve the result of the Future on the host.

	
inline FutureBase *get_control()

	Get control block for Future.

Composing render graphs

Futures make easy to compose complex operations and effects out of RenderGraph building blocks, linked by Futures. These building blocks are termed partials, and vuk provides some built-in. Such partials are functions that take a number of Futures as input, and produce a Future as output.

The built-in partials can be found below. Built on these, there are some convenience functions that couple resource allocation with initial data (create_XXX()).

	
namespace vuk

	
Functions

	
inline Future host_data_to_buffer(Allocator &allocator, DomainFlagBits copy_domain, Buffer dst, const void *src_data, size_t size)

	Fill a buffer with host data.

	Parameters:

	
	allocator – Allocator to use for temporary allocations

	copy_domain – The domain where the copy should happen (when dst is mapped, the copy happens on host)

	buffer – Buffer to fill

	src_data – pointer to source data

	size – size of source data

	
template<class T>
Future host_data_to_buffer(Allocator &allocator, DomainFlagBits copy_domain, Buffer dst, std::span<T> data)

	Fill a buffer with host data.

	Parameters:

	
	allocator – Allocator to use for temporary allocations

	copy_domain – The domain where the copy should happen (when dst is mapped, the copy happens on host)

	dst – Buffer to fill

	data – source data

	
inline Future download_buffer(Future buffer_src)

	Download a buffer to GPUtoCPU memory.

	Parameters:

	buffer_src – Buffer to download

	
inline Future host_data_to_image(Allocator &allocator, DomainFlagBits copy_domain, ImageAttachment image, const void *src_data)

	Fill an image with host data.

	Parameters:

	
	allocator – Allocator to use for temporary allocations

	copy_domain – The domain where the copy should happen (when dst is mapped, the copy happens on host)

	image – ImageAttachment to fill

	src_data – pointer to source data

	
inline Future transition(Future image, Access dst_access)

	Transition image for given access - useful to force certain access across different RenderGraphs linked by Futures.

	Parameters:

	
	image – input Future of ImageAttachment

	dst_access – Access to have in the future

	
inline Future generate_mips(Future image, uint32_t base_mip, uint32_t num_mips)

	Generate mips for given ImageAttachment.

	Parameters:

	
	image – input Future of ImageAttachment

	base_mip – source mip level

	num_mips – number of mip levels to generate

	
template<class T>
std::pair<Unique<Buffer>, Future> create_buffer(Allocator &allocator, vuk::MemoryUsage memory_usage, DomainFlagBits domain, std::span<T> data, size_t alignment = 1)

	Allocates & fills a buffer with explicitly managed lifetime.

	Parameters:

	
	allocator – Allocator to allocate this Buffer from

	mem_usage – Where to allocate the buffer (host visible buffers will be automatically mapped)

	
inline std::pair<Texture, Future> create_texture(Allocator &allocator, Format format, Extent3D extent, void *data, bool should_generate_mips, SourceLocationAtFrame loc = VUK_HERE_AND_NOW())

	Allocates & fills an image, creates default ImageView for it (legacy)

	Parameters:

	
	allocator – Allocator to allocate this Texture from

	format – Format of the image

	extent – Extent3D of the image

	data – pointer to data to fill the image with

	should_generate_mips – if true, all mip levels are generated from the 0th level

CommandBuffer

The CommandBuffer class offers a convenient abstraction over command recording, pipeline state and descriptor sets of Vulkan.

Setting pipeline state

The CommandBuffer encapsulates the current pipeline and descriptor state. When calling state-setting commands, the current state of the CommandBuffer is updated. The state of the CommandBuffer persists for the duration of the execution callback, and there is no state leakage between callbacks of different passes.

The various states of the pipeline can be reconfigured by calling the appropriate function, such as vuk::CommandBuffer::set_rasterization().

There is no default state - you must explicitly bind all state used for the commands recorded.

Static and dynamic state

Vulkan allows some pipeline state to be dynamic. In vuk this is exposed as an optimisation - you may let the CommandBuffer know that certain pipeline state is dynamic by calling vuk::CommandBuffer::set_dynamic_state(). This call changes which states are considered dynamic. Dynamic state is usually cheaper to change than entire pipelines and leads to fewer pipeline compilations, but has more overhead compared to static state - use it when a state changes often. Some state can be set dynamic on some platforms without cost. As with other pipeline state, setting states to be dynamic or static persist only during the callback.

Binding pipelines & specialization constants

The CommandBuffer maintains separate bind points for compute and graphics pipelines. The CommandBuffer also maintains an internal buffer of specialization constants that are applied to the pipeline bound. Changing specialization constants will trigger a pipeline compilation when using the pipeline for the first time.

Binding descriptors & push constants

vuk allows two types of descriptors to be bound: ephemeral and persistent.

Ephemeral descriptors are bound individually to the CommandBuffer via bind_XXX() calls where XXX denotes the type of the descriptor (eg. uniform buffer). These descriptors are internally managed by the CommandBuffer and the Allocator it references. Ephemeral descriptors are very convenient to use, but they are limited in the number of bindable descriptors (VUK_MAX_BINDINGS) and they incur a small overhead on bind.

Persistent descriptors are managed by the user via allocation of a PersistentDescriptorSet from Allocator and manually updating the contents. There is no limit on the number of descriptors and binding such descriptor sets do not have an overhead over the direct Vulkan call. Large descriptor arrays (such as the ones used in “bindless” techniques) are only possible via persistent descriptor sets.

The number of bindable sets is limited by VUK_MAX_SETS. Both ephemeral descriptors and persistent descriptor sets retain their bindings until overwritten, disturbed or the the callback ends.

Push constants can be changed by calling vuk::CommandBuffer::push_constants().

Vertex buffers and attributes

While vertex buffers are waning in popularity, vuk still offers a convenient API for most attribute arrangements. If advanced addressing schemes are not required, they can be a convenient alternative to vertex pulling.

The shader declares attributes, which require a location. When binding vertex buffers, you are telling vuk where each attribute, corresponding to a location can be found.
Each vuk::CommandBuffer::bind_vertex_buffer() binds a single vuk::Buffer, which can contain multiple attributes

The first two arguments to vuk::CommandBuffer::bind_vertex_buffer() specify the index of the vertex buffer binding and buffer to binding to that binding.
(so if you have 1 vertex buffers, you pass 0, if you have 2 vertex buffers, you have 2 calls where you pass 0 and 1 as binding - these don’t need to start at 0 or be contiguous but they might as well be)

In the second part of the arguments you specify which attributes can be found the vertex buffer that is being bound, what is their format, and what is their offset.
For convenience vuk offers a utility called vuk::Packed to describe common vertex buffers that contain interleaved attribute data.

The simplest case is a single attribute per vertex buffer, this is described by calling bind_vertex_buffer(binding, buffer, location, vuk::Packed{ vuk::Format::eR32G32B32Sfloat }) - with the actual format of the attribute.
Here vuk::Packed means that the formats are packed in the buffer, i.e. you have a R32G32B32, then immediately after a R32G32B32, and so on.

If there are multiple interleaved attributes in a buffer, for example it is [position, normal, position, normal], then you can describe this in a very compact way in vuk if the position attribute location and normal attribute location is consecutive: bind_vertex_buffer(binding, buffer, first_location, vuk::Packed{ vuk::Format::eR32G32B32Sfloat, vuk::Format::eR32G32B32Sfloat }).
Finally, you can describe holes in your interleaving by using vuk::Ignore(byte_size) in the format list for vuk::Packed.

If your attribute scheme cannot be described like this, you can also use vuk::CommandBuffer::bind_vertex_buffer() with a manually built span<VertexInputAttributeDescription> and computed stride.

Command recording

Draws and dispatches can be recorded by calling the appropriate function. Any state changes made will be recorded into the underlying Vulkan command buffer, along with the draw or dispatch.

Error handling

The CommandBuffer implements “monadic” error handling, because operations that allocate resources might fail. In this case the CommandBuffer is moved into the error state and subsequent calls do not modify the underlying state.

	
class CommandBuffer

	
Public Functions

	
inline Context &get_context()

	Retrieve parent context.

	
const RenderPassInfo &get_ongoing_render_pass() const

	Retrieve information about the current renderpass.

	
Result<Buffer> get_resource_buffer(Name resource_name) const

	Retrieve Buffer attached to given name.

	Returns:

	the attached Buffer or RenderGraphException

	
Result<Buffer> get_resource_buffer(const NameReference &resource_name_reference) const

	Retrieve Buffer attached to given NameReference.

	Returns:

	the attached Buffer or RenderGraphException

	
Result<Image> get_resource_image(Name resource_name) const

	Retrieve Image attached to given name.

	Returns:

	the attached Image or RenderGraphException

	
Result<ImageView> get_resource_image_view(Name resource_name) const

	Retrieve ImageView attached to given name.

	Returns:

	the attached ImageView or RenderGraphException

	
Result<ImageAttachment> get_resource_image_attachment(Name resource_name) const

	Retrieve ImageAttachment attached to given name.

	Returns:

	the attached ImageAttachment or RenderGraphException

	
Result<ImageAttachment> get_resource_image_attachment(const NameReference &resource_name_reference) const

	Retrieve ImageAttachment attached to given NameReference.

	Returns:

	the attached ImageAttachment or RenderGraphException

	
CommandBuffer &set_descriptor_set_strategy(DescriptorSetStrategyFlags ds_strategy_flags)

	Set the strategy for allocating and updating ephemeral descriptor sets.

The default strategy is taken from the context when entering a new Pass

	Parameters:

	ds_strategy_flags – Mask of strategy options

	
CommandBuffer &set_dynamic_state(DynamicStateFlags dynamic_state_flags)

	Set mask of dynamic state in CommandBuffer.

	Parameters:

	dynamic_state_flags – Mask of states (flag set = dynamic, flag clear = static)

	
CommandBuffer &set_viewport(unsigned index, Viewport vp)

	Set the viewport transformation for the specified viewport index.

	Parameters:

	
	index – viewport index to modify

	vp – Viewport to be set

	
CommandBuffer &set_viewport(unsigned index, Rect2D area, float min_depth = 0.f, float max_depth = 1.f)

	Set the viewport transformation for the specified viewport index from a rect.

	Parameters:

	
	index – viewport index to modify

	area – Rect2D extents of the Viewport

	min_depth – Minimum depth of Viewport

	max_depth – Maximum depth of Viewport

	
CommandBuffer &set_scissor(unsigned index, Rect2D area)

	Set the scissor for the specified scissor index from a rect.

	Parameters:

	
	index – scissor index to modify

	area – Rect2D extents of the scissor

	
CommandBuffer &set_rasterization(PipelineRasterizationStateCreateInfo rasterization_state)

	Set the rasterization state.

	
CommandBuffer &set_depth_stencil(PipelineDepthStencilStateCreateInfo depth_stencil_state)

	Set the depth/stencil state.

	
CommandBuffer &set_conservative(PipelineRasterizationConservativeStateCreateInfo conservative_state)

	Set the conservative rasterization state.

	
CommandBuffer &broadcast_color_blend(PipelineColorBlendAttachmentState color_blend_state)

	Set one color blend state to use for all color attachments.

	
CommandBuffer &broadcast_color_blend(BlendPreset blend_preset)

	Set one color blend preset to use for all color attachments.

	
CommandBuffer &set_color_blend(Name color_attachment, PipelineColorBlendAttachmentState color_blend_state)

	Set color blend state for a specific color attachment.

	Parameters:

	
	color_attachment – the Name of the color_attachment to set the blend state for

	color_blend_state – PipelineColorBlendAttachmentState to use

	
CommandBuffer &set_color_blend(Name color_attachment, BlendPreset blend_preset)

	Set color blend preset for a specific color attachment.

	Parameters:

	
	color_attachment – the Name of the color_attachment to set the blend preset for

	blend_preset – BlendPreset to use

	
CommandBuffer &set_blend_constants(std::array<float, 4> blend_constants)

	Set blend constants.

	
CommandBuffer &bind_graphics_pipeline(PipelineBaseInfo *pipeline_base)

	Bind a graphics pipeline for subsequent draws.

	Parameters:

	pipeline_base – pointer to a pipeline base to bind

	
CommandBuffer &bind_graphics_pipeline(Name named_pipeline)

	Bind a named graphics pipeline for subsequent draws.

	Parameters:

	named_pipeline – graphics pipeline name

	
CommandBuffer &bind_compute_pipeline(PipelineBaseInfo *pipeline_base)

	Bind a compute pipeline for subsequent dispatches.

	Parameters:

	pipeline_base – pointer to a pipeline base to bind

	
CommandBuffer &bind_compute_pipeline(Name named_pipeline)

	Bind a named graphics pipeline for subsequent dispatches.

	Parameters:

	named_pipeline – compute pipeline name

	
CommandBuffer &bind_ray_tracing_pipeline(PipelineBaseInfo *pipeline_base)

	Bind a ray tracing pipeline for subsequent draws.

	Parameters:

	pipeline_base – pointer to a pipeline base to bind

	
CommandBuffer &bind_ray_tracing_pipeline(Name named_pipeline)

	Bind a named ray tracing pipeline for subsequent draws.

	Parameters:

	named_pipeline – graphics pipeline name

	
inline CommandBuffer &specialize_constants(uint32_t constant_id, bool value)

	Set specialization constants for the command buffer.

	Parameters:

	
	constant_id – ID of the constant. All stages form a single namespace for IDs.

	value – Value of the specialization constant

	
inline CommandBuffer &specialize_constants(uint32_t constant_id, uint32_t value)

	Set specialization constants for the command buffer.

	Parameters:

	
	constant_id – ID of the constant. All stages form a single namespace for IDs.

	value – Value of the specialization constant

	
inline CommandBuffer &specialize_constants(uint32_t constant_id, int32_t value)

	Set specialization constants for the command buffer.

	Parameters:

	
	constant_id – ID of the constant. All stages form a single namespace for IDs.

	value – Value of the specialization constant

	
inline CommandBuffer &specialize_constants(uint32_t constant_id, float value)

	Set specialization constants for the command buffer.

	Parameters:

	
	constant_id – ID of the constant. All stages form a single namespace for IDs.

	value – Value of the specialization constant

	
inline CommandBuffer &specialize_constants(uint32_t constant_id, double value)

	Set specialization constants for the command buffer.

	Parameters:

	
	constant_id – ID of the constant. All stages form a single namespace for IDs.

	value – Value of the specialization constant

	
CommandBuffer &set_primitive_topology(PrimitiveTopology primitive_topology)

	Set primitive topology.

	
CommandBuffer &bind_index_buffer(const Buffer &buffer, IndexType type)

	Binds an index buffer with the given type.

	Parameters:

	
	buffer – The buffer to be bound

	type – The index type in the buffer

	
CommandBuffer &bind_index_buffer(Name resource_name, IndexType type)

	Binds an index buffer from a Resource with the given type.

	Parameters:

	
	resource_name – The Name of the Resource to be bound

	type – The index type in the buffer

	
CommandBuffer &bind_vertex_buffer(unsigned binding, const Buffer &buffer, unsigned first_location, Packed format_list)

	Binds a vertex buffer to the given binding point and configures attributes sourced from this buffer based on a packed format list, the attribute locations are offset with first_location.

	Parameters:

	
	binding – The binding point of the buffer

	buffer – The buffer to be bound

	first_location – First location assigned to the attributes

	format_list – List of formats packed in buffer to generate attributes from

	
CommandBuffer &bind_vertex_buffer(unsigned binding, Name resource_name, unsigned first_location, Packed format_list)

	Binds a vertex buffer from a Resource to the given binding point and configures attributes sourced from this buffer based on a packed format list, the attribute locations are offset with first_location.

	Parameters:

	
	binding – The binding point of the buffer

	resource_name – The Name of the Resource to be bound

	first_location – First location assigned to the attributes

	format_list – List of formats packed in buffer to generate attributes from

	
CommandBuffer &bind_vertex_buffer(unsigned binding, const Buffer &buffer, std::span<VertexInputAttributeDescription> attribute_descriptions, uint32_t stride)

	Binds a vertex buffer to the given binding point and configures attributes sourced from this buffer based on a span of attribute descriptions and stride.

	Parameters:

	
	binding – The binding point of the buffer

	buffer – The buffer to be bound

	attribute_descriptions – Attributes that are sourced from this buffer

	stride – Stride of a vertex sourced from this buffer

	
CommandBuffer &bind_vertex_buffer(unsigned binding, Name resource_name, std::span<VertexInputAttributeDescription> attribute_descriptions, uint32_t stride)

	Binds a vertex buffer from a Resource to the given binding point and configures attributes sourced from this buffer based on a span of attribute descriptions and stride.

	Parameters:

	
	binding – The binding point of the buffer

	resource_name – The Name of the Resource to be bound

	attribute_descriptions – Attributes that are sourced from this buffer

	stride – Stride of a vertex sourced from this buffer

	
CommandBuffer &push_constants(ShaderStageFlags stages, size_t offset, void *data, size_t size)

	Update push constants for the specified stages with bytes.

	Parameters:

	
	stages – Pipeline stages that can see the updated bytes

	offset – Offset into the push constant buffer

	data – Pointer to data to be copied into push constants

	size – Size of data

	
template<class T>
inline CommandBuffer &push_constants(ShaderStageFlags stages, size_t offset, std::span<T> span)

	Update push constants for the specified stages with a span of values.

	Template Parameters:

	T – type of values

	Parameters:

	
	stages – Pipeline stages that can see the updated bytes

	offset – Offset into the push constant buffer

	span – Values to write

	
template<class T>
inline CommandBuffer &push_constants(ShaderStageFlags stages, size_t offset, T value)

	Update push constants for the specified stages with a single value.

	Template Parameters:

	T – type of value

	Parameters:

	
	stages – Pipeline stages that can see the updated bytes

	offset – Offset into the push constant buffer

	value – Value to write

	
CommandBuffer &bind_persistent(unsigned set, PersistentDescriptorSet &desc_set)

	Bind a persistent descriptor set to the command buffer.

	Parameters:

	
	set – The set bind index to be used

	desc_set – The persistent descriptor set to be bound

	
CommandBuffer &bind_buffer(unsigned set, unsigned binding, const Buffer &buffer)

	Bind a buffer to the command buffer.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the buffer to

	buffer – The buffer to be bound

	
CommandBuffer &bind_buffer(unsigned set, unsigned binding, Name resource_name)

	Bind a buffer to the command buffer from a Resource.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the buffer to

	resource_name – The Name of the Resource to be bound

	
CommandBuffer &bind_image(unsigned set, unsigned binding, ImageView image_view, ImageLayout layout = ImageLayout::eReadOnlyOptimalKHR)

	Bind an image to the command buffer.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the image to

	image_view – The ImageView to bind

	layout – layout of the image when the affected draws execute

	
CommandBuffer &bind_image(unsigned set, unsigned binding, const ImageAttachment &image, ImageLayout layout = ImageLayout::eReadOnlyOptimalKHR)

	Bind an image to the command buffer.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the image to

	image – The ImageAttachment to bind

	layout – layout of the image when the affected draws execute

	
CommandBuffer &bind_image(unsigned set, unsigned binding, Name resource_name)

	Bind an image to the command buffer from a Resource.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the image to

	resource_name – The Name of the Resource to be bound

	
CommandBuffer &bind_sampler(unsigned set, unsigned binding, SamplerCreateInfo sampler_create_info)

	Bind a sampler to the command buffer from a Resource.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the sampler to

	sampler_create_info – Parameters of the sampler

	
void *_map_scratch_buffer(unsigned set, unsigned binding, size_t size)

	Allocate some CPUtoGPU memory and bind it as a buffer. Return a pointer to the mapped memory.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the buffer to

	size – Amount of memory to allocate

	Returns:

	pointer to the mapped host-visible memory. Null pointer if the command buffer has errored out previously or the allocation failed

	
template<class T>
inline T *map_scratch_buffer(unsigned set, unsigned binding)

	Allocate some typed CPUtoGPU memory and bind it as a buffer. Return a pointer to the mapped memory.

	Template Parameters:

	T – Type of the uniform to write

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the buffer to

	Returns:

	pointer to the mapped host-visible memory. Null pointer if the command buffer has errored out previously or the allocation failed

	
CommandBuffer &bind_acceleration_structure(unsigned set, unsigned binding, VkAccelerationStructureKHR tlas)

	Bind a sampler to the command buffer from a Resource.

	Parameters:

	
	set – The set bind index to be used

	binding – The descriptor binding to bind the sampler to

	sampler_create_info – Parameters of the sampler

	
CommandBuffer &draw(size_t vertex_count, size_t instance_count, size_t first_vertex, size_t first_instance)

	Issue a non-indexed draw.

	Parameters:

	
	vertex_count – Number of vertices to draw

	instance_count – Number of instances to draw

	first_vertex – Index of the first vertex to draw

	first_instance – Index of the first instance to draw

	
CommandBuffer &draw_indexed(size_t index_count, size_t instance_count, size_t first_index, int32_t vertex_offset, size_t first_instance)

	Isuse an indexed draw.

	Parameters:

	
	index_count – Number of vertices to draw

	instance_count – Number of instances to draw

	first_index – Index of the first index in the index buffer

	vertex_offset – value added to the vertex index before indexing into the vertex buffer(s)

	first_instance – Index of the first instance to draw

	
CommandBuffer &draw_indexed_indirect(size_t command_count, const Buffer &indirect_buffer)

	Issue an indirect indexed draw.

	Parameters:

	
	command_count – Number of indirect commands to be used

	indirect_buffer – Buffer of indirect commands

	
CommandBuffer &draw_indexed_indirect(size_t command_count, Name indirect_resource_name)

	Issue an indirect indexed draw.

	Parameters:

	
	command_count – Number of indirect commands to be used

	indirect_resource_name – The Name of the Resource to use as indirect buffer

	
CommandBuffer &draw_indexed_indirect(std::span<DrawIndexedIndirectCommand> commands)

	Issue an indirect indexed draw.

	Parameters:

	commands – Indirect commands to be uploaded and used for this draw

	
CommandBuffer &draw_indexed_indirect_count(size_t max_command_count, const Buffer &indirect_buffer, const Buffer &count_buffer)

	Issue an indirect indexed draw with count.

	Parameters:

	
	max_command_count – Upper limit of commands that can be drawn

	indirect_buffer – Buffer of indirect commands

	count_buffer – Buffer of command count

	
CommandBuffer &draw_indexed_indirect_count(size_t max_command_count, Name indirect_resource_name, Name count_resource_name)

	Issue an indirect indexed draw with count.

	Parameters:

	
	max_command_count – Upper limit of commands that can be drawn

	indirect_resource_name – The Name of the Resource to use as indirect buffer

	count_resource_name – The Name of the Resource to use as count buffer

	
CommandBuffer &dispatch(size_t group_count_x, size_t group_count_y = 1, size_t group_count_z = 1)

	Issue a compute dispatch.

	Parameters:

	
	group_count_x – Number of groups on the x-axis

	group_count_y – Number of groups on the y-axis

	group_count_z – Number of groups on the z-axis

	
CommandBuffer &dispatch_invocations(size_t invocation_count_x, size_t invocation_count_y = 1, size_t invocation_count_z = 1)

	Perform a dispatch while specifying the minimum invocation count Actual invocation count will be rounded up to be a multiple of local_size_{x,y,z}.

	Parameters:

	
	invocation_count_x – Number of invocations on the x-axis

	invocation_count_y – Number of invocations on the y-axis

	invocation_count_z – Number of invocations on the z-axis

	
CommandBuffer &dispatch_invocations_per_pixel(Name name, float invocations_per_pixel_scale_x = 1.f, float invocations_per_pixel_scale_y = 1.f, float invocations_per_pixel_scale_z = 1.f)

	Perform a dispatch with invocations per pixel The number of invocations per pixel can be scaled in all dimensions If the scale is == 1, then 1 invocations will be dispatched per pixel If the scale is larger than 1, then more invocations will be dispatched than pixels If the scale is smaller than 1, then fewer invocations will be dispatched than pixels Actual invocation count will be rounded up to be a multiple of local_size_{x,y,z} after scaling Width corresponds to the x-axis, height to the y-axis and depth to the z-axis.

	Parameters:

	
	name – Name of the Image Resource to use for extents

	invocations_per_pixel_scale_x – Invocation count scale in x-axis

	invocations_per_pixel_scale_y – Invocation count scale in y-axis

	invocations_per_pixel_scale_z – Invocation count scale in z-axis

	
CommandBuffer &dispatch_invocations_per_pixel(ImageAttachment &ia, float invocations_per_pixel_scale_x = 1.f, float invocations_per_pixel_scale_y = 1.f, float invocations_per_pixel_scale_z = 1.f)

	Perform a dispatch with invocations per pixel The number of invocations per pixel can be scaled in all dimensions If the scale is == 1, then 1 invocations will be dispatched per pixel If the scale is larger than 1, then more invocations will be dispatched than pixels If the scale is smaller than 1, then fewer invocations will be dispatched than pixels Actual invocation count will be rounded up to be a multiple of local_size_{x,y,z} after scaling Width corresponds to the x-axis, height to the y-axis and depth to the z-axis.

	Parameters:

	
	ia – ImageAttachment to use for extents

	invocations_per_pixel_scale_x – Invocation count scale in x-axis

	invocations_per_pixel_scale_y – Invocation count scale in y-axis

	invocations_per_pixel_scale_z – Invocation count scale in z-axis

	
CommandBuffer &dispatch_invocations_per_element(Name name, size_t element_size, float invocations_per_element_scale = 1.f)

	Perform a dispatch with invocations per buffer element Actual invocation count will be rounded up to be a multiple of local_size_{x,y,z} The number of invocations per element can be scaled If the scale is == 1, then 1 invocations will be dispatched per element If the scale is larger than 1, then more invocations will be dispatched than element If the scale is smaller than 1, then fewer invocations will be dispatched than element The dispatch will be sized only on the x-axis.

	Parameters:

	
	name – Name of the Buffer Resource to use for calculating element count

	element_size – Size of one element

	invocations_per_element_scale – Invocation count scale

	
CommandBuffer &dispatch_invocations_per_element(Buffer &buffer, size_t element_size, float invocations_per_element_scale = 1.f)

	Perform a dispatch with invocations per buffer element Actual invocation count will be rounded up to be a multiple of local_size_{x,y,z} The number of invocations per element can be scaled If the scale is == 1, then 1 invocations will be dispatched per element If the scale is larger than 1, then more invocations will be dispatched than element If the scale is smaller than 1, then fewer invocations will be dispatched than element The dispatch will be sized only on the x-axis.

	Parameters:

	
	buffer – Buffer to use for calculating element count

	element_size – Size of one element

	invocations_per_element_scale – Invocation count scale

	
CommandBuffer &dispatch_indirect(const Buffer &indirect_buffer)

	Issue an indirect compute dispatch.

	Parameters:

	indirect_buffer – Buffer of workgroup counts

	
CommandBuffer &dispatch_indirect(Name indirect_resource_name)

	Issue an indirect compute dispatch.

	Parameters:

	indirect_resource_name – The Name of the Resource to use as indirect buffer

	
CommandBuffer &trace_rays(size_t width, size_t height, size_t depth)

	Perform ray trace query with a ray tracing pipeline.

	Parameters:

	
	width – width of the ray trace query dimensions

	height – height of the ray trace query dimensions

	depth – depth of the ray trace query dimensions

	
CommandBuffer &build_acceleration_structures(uint32_t info_count, const VkAccelerationStructureBuildGeometryInfoKHR *pInfos, const VkAccelerationStructureBuildRangeInfoKHR *const *ppBuildRangeInfos)

	Build acceleration structures.

	
CommandBuffer &clear_image(Name src, Clear clear_value)

	Clear an image.

	Parameters:

	
	src – the Name of the Resource to be cleared

	clear_value – value to clear with

	
CommandBuffer &resolve_image(Name src, Name dst)

	Resolve an image.

	Parameters:

	
	src – the Name of the multisampled Resource

	dst – the Name of the singlesampled Resource

	
CommandBuffer &blit_image(Name src, Name dst, ImageBlit region, Filter filter)

	Perform an image blit.

	Parameters:

	
	src – the Name of the source Resource

	dst – the Name of the destination Resource

	region – parameters of the blit

	filter – Filter to use if the src and dst extents differ

	
CommandBuffer ©_buffer_to_image(Name src, Name dst, BufferImageCopy copy_params)

	Copy a buffer resource into an image resource.

	Parameters:

	
	src – the Name of the source Resource

	dst – the Name of the destination Resource

	copy_params – parameters of the copy

	
CommandBuffer ©_image_to_buffer(Name src, Name dst, BufferImageCopy copy_params)

	Copy an image resource into a buffer resource.

	Parameters:

	
	src – the Name of the source Resource

	dst – the Name of the destination Resource

	copy_params – parameters of the copy

	
CommandBuffer ©_buffer(Name src, Name dst, size_t size)

	Copy between two buffer resource.

	Parameters:

	
	src – the Name of the source Resource

	dst – the Name of the destination Resource

	size – number of bytes to copy (VK_WHOLE_SIZE to copy the entire “src” buffer)

	
CommandBuffer ©_buffer(const Buffer &src, const Buffer &dst, size_t size)

	Copy between two Buffers.

	Parameters:

	
	src – the source Buffer

	dst – the destination Buffer

	size – number of bytes to copy (VK_WHOLE_SIZE to copy the entire “src” buffer)

	
CommandBuffer &fill_buffer(Name dst, size_t size, uint32_t data)

	Fill a buffer with a fixed value.

	Parameters:

	
	dst – the Name of the destination Resource

	size – number of bytes to fill

	data – the 4 byte value to fill with

	
CommandBuffer &fill_buffer(const Buffer &dst, size_t size, uint32_t data)

	Fill a buffer with a fixed value.

	Parameters:

	
	dst – the destination Buffer

	size – number of bytes to fill

	data – the 4 byte value to fill with

	
CommandBuffer &update_buffer(Name dst, size_t size, void *data)

	Fill a buffer with a host values.

	Parameters:

	
	dst – the Name of the destination Resource

	size – number of bytes to fill

	data – pointer to host values

	
CommandBuffer &update_buffer(const Buffer &dst, size_t size, void *data)

	Fill a buffer with a host values.

	Parameters:

	
	dst – the destination Buffer

	size – number of bytes to fill

	data – pointer to host values

	
CommandBuffer &memory_barrier(Access src_access, Access dst_access)

	Issue a memory barrier.

	Parameters:

	
	src_access – previous Access

	dst_access – subsequent Access

	
CommandBuffer &image_barrier(Name resource_name, Access src_access, Access dst_access, uint32_t base_level = 0, uint32_t level_count = VK_REMAINING_MIP_LEVELS)

	Issue an image barrier for an image resource.

	Parameters:

	
	resource_name – the Name of the image Resource

	src_access – previous Access

	dst_access – subsequent Access

	base_level – base mip level affected by the barrier

	level_count – number of mip levels affected by the barrier

	
CommandBuffer &write_timestamp(Query query, PipelineStageFlagBits stage = PipelineStageFlagBits::eBottomOfPipe)

	Write a timestamp to given Query.

	Parameters:

	
	query – the Query to hold the result

	stage – the pipeline stage where the timestamp should latch the earliest

	
VkCommandBuffer bind_compute_state()

	Bind all pending compute state and return a raw VkCommandBuffer for direct access.

	
VkCommandBuffer bind_graphics_state()

	Bind all pending graphics state and return a raw VkCommandBuffer for direct access.

	
VkCommandBuffer bind_ray_tracing_state()

	Bind all pending ray tracing state and return a raw VkCommandBuffer for direct access.

Index

 V

V

 	
 	vuk (C++ type), [1]

 	vuk::allocate_buffer (C++ function)

 	vuk::allocate_command_buffer (C++ function)

 	vuk::allocate_command_pool (C++ function)

 	vuk::allocate_fence (C++ function)

 	vuk::allocate_image (C++ function), [1]

 	vuk::allocate_image_view (C++ function), [1]

 	vuk::allocate_semaphore (C++ function)

 	vuk::allocate_timeline_semaphore (C++ function)

 	vuk::Allocator (C++ class), [1]

 	vuk::Allocator::allocate (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 	vuk::Allocator::allocate_acceleration_structures (C++ function)

 	vuk::Allocator::allocate_buffers (C++ function)

 	vuk::Allocator::allocate_command_buffers (C++ function)

 	vuk::Allocator::allocate_command_pools (C++ function)

 	vuk::Allocator::allocate_compute_pipelines (C++ function)

 	vuk::Allocator::allocate_descriptor_sets (C++ function)

 	vuk::Allocator::allocate_descriptor_sets_with_value (C++ function)

 	vuk::Allocator::allocate_fences (C++ function)

 	vuk::Allocator::allocate_framebuffers (C++ function)

 	vuk::Allocator::allocate_graphics_pipelines (C++ function)

 	vuk::Allocator::allocate_image_views (C++ function)

 	vuk::Allocator::allocate_images (C++ function)

 	vuk::Allocator::allocate_persistent_descriptor_sets (C++ function)

 	vuk::Allocator::allocate_ray_tracing_pipelines (C++ function)

 	vuk::Allocator::allocate_render_passes (C++ function)

 	vuk::Allocator::allocate_semaphores (C++ function)

 	vuk::Allocator::allocate_timeline_semaphores (C++ function)

 	vuk::Allocator::allocate_timestamp_queries (C++ function)

 	vuk::Allocator::allocate_timestamp_query_pools (C++ function)

 	vuk::Allocator::Allocator (C++ function)

 	vuk::Allocator::deallocate (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]

 	vuk::Allocator::get_context (C++ function)

 	vuk::Allocator::get_device_resource (C++ function)

 	vuk::CommandBuffer (C++ class)

 	vuk::CommandBuffer::_map_scratch_buffer (C++ function)

 	vuk::CommandBuffer::bind_acceleration_structure (C++ function)

 	vuk::CommandBuffer::bind_buffer (C++ function), [1]

 	vuk::CommandBuffer::bind_compute_pipeline (C++ function), [1]

 	vuk::CommandBuffer::bind_compute_state (C++ function)

 	vuk::CommandBuffer::bind_graphics_pipeline (C++ function), [1]

 	vuk::CommandBuffer::bind_graphics_state (C++ function)

 	vuk::CommandBuffer::bind_image (C++ function), [1], [2]

 	vuk::CommandBuffer::bind_index_buffer (C++ function), [1]

 	vuk::CommandBuffer::bind_persistent (C++ function)

 	vuk::CommandBuffer::bind_ray_tracing_pipeline (C++ function), [1]

 	vuk::CommandBuffer::bind_ray_tracing_state (C++ function)

 	vuk::CommandBuffer::bind_sampler (C++ function)

 	vuk::CommandBuffer::bind_vertex_buffer (C++ function), [1], [2], [3]

 	vuk::CommandBuffer::blit_image (C++ function)

 	vuk::CommandBuffer::broadcast_color_blend (C++ function), [1]

 	vuk::CommandBuffer::build_acceleration_structures (C++ function)

 	vuk::CommandBuffer::clear_image (C++ function)

 	vuk::CommandBuffer::copy_buffer (C++ function), [1]

 	vuk::CommandBuffer::copy_buffer_to_image (C++ function)

 	vuk::CommandBuffer::copy_image_to_buffer (C++ function)

 	vuk::CommandBuffer::dispatch (C++ function)

 	vuk::CommandBuffer::dispatch_indirect (C++ function), [1]

 	vuk::CommandBuffer::dispatch_invocations (C++ function)

 	vuk::CommandBuffer::dispatch_invocations_per_element (C++ function), [1]

 	vuk::CommandBuffer::dispatch_invocations_per_pixel (C++ function), [1]

 	vuk::CommandBuffer::draw (C++ function)

 	vuk::CommandBuffer::draw_indexed (C++ function)

 	vuk::CommandBuffer::draw_indexed_indirect (C++ function), [1], [2]

 	vuk::CommandBuffer::draw_indexed_indirect_count (C++ function), [1]

 	vuk::CommandBuffer::fill_buffer (C++ function), [1]

 	vuk::CommandBuffer::get_context (C++ function)

 	vuk::CommandBuffer::get_ongoing_render_pass (C++ function)

 	vuk::CommandBuffer::get_resource_buffer (C++ function), [1]

 	vuk::CommandBuffer::get_resource_image (C++ function)

 	vuk::CommandBuffer::get_resource_image_attachment (C++ function), [1]

 	vuk::CommandBuffer::get_resource_image_view (C++ function)

 	vuk::CommandBuffer::image_barrier (C++ function)

 	vuk::CommandBuffer::map_scratch_buffer (C++ function)

 	vuk::CommandBuffer::memory_barrier (C++ function)

 	vuk::CommandBuffer::push_constants (C++ function), [1], [2]

 	vuk::CommandBuffer::resolve_image (C++ function)

 	vuk::CommandBuffer::set_blend_constants (C++ function)

 	vuk::CommandBuffer::set_color_blend (C++ function), [1]

 	vuk::CommandBuffer::set_conservative (C++ function)

 	vuk::CommandBuffer::set_depth_stencil (C++ function)

 	vuk::CommandBuffer::set_descriptor_set_strategy (C++ function)

 	vuk::CommandBuffer::set_dynamic_state (C++ function)

 	vuk::CommandBuffer::set_primitive_topology (C++ function)

 	vuk::CommandBuffer::set_rasterization (C++ function)

 	vuk::CommandBuffer::set_scissor (C++ function)

 	vuk::CommandBuffer::set_viewport (C++ function), [1]

 	vuk::CommandBuffer::specialize_constants (C++ function), [1], [2], [3], [4]

 	vuk::CommandBuffer::trace_rays (C++ function)

 	
 	vuk::CommandBuffer::update_buffer (C++ function), [1]

 	vuk::CommandBuffer::write_timestamp (C++ function)

 	vuk::Context (C++ class)

 	vuk::Context::acquire_descriptor_pool (C++ function)

 	vuk::Context::acquire_sampler (C++ function)

 	vuk::Context::add_swapchain (C++ function)

 	vuk::Context::begin_region (C++ function)

 	vuk::Context::collect (C++ function)

 	vuk::Context::compile_shader (C++ function)

 	vuk::Context::Context (C++ function)

 	vuk::Context::create_named_pipeline (C++ function)

 	vuk::Context::create_timestamp_query (C++ function)

 	vuk::Context::debug_enabled (C++ function)

 	vuk::Context::default_descriptor_set_strategy (C++ member)

 	vuk::Context::end_region (C++ function)

 	vuk::Context::get_frame_count (C++ function)

 	vuk::Context::get_named_pipeline (C++ function)

 	vuk::Context::get_pipeline_reflection_info (C++ function)

 	vuk::Context::get_unique_handle_id (C++ function)

 	vuk::Context::get_vk_resource (C++ function)

 	vuk::Context::is_timestamp_available (C++ function)

 	vuk::Context::load_pipeline_cache (C++ function)

 	vuk::Context::make_timestamp_results_available (C++ function)

 	vuk::Context::next_frame (C++ function)

 	vuk::Context::remove_swapchain (C++ function)

 	vuk::Context::retrieve_duration (C++ function)

 	vuk::Context::retrieve_timestamp (C++ function)

 	vuk::Context::save_pipeline_cache (C++ function)

 	vuk::Context::set_name (C++ function), [1]

 	vuk::Context::vk_pipeline_cache (C++ member)

 	vuk::Context::wait_idle (C++ function)

 	vuk::Context::wrap (C++ function)

 	vuk::ContextCreateParameters (C++ struct)

 	vuk::ContextCreateParameters::allow_dynamic_loading_of_vk_function_pointers (C++ member)

 	vuk::ContextCreateParameters::compute_queue (C++ member)

 	vuk::ContextCreateParameters::compute_queue_family_index (C++ member)

 	vuk::ContextCreateParameters::device (C++ member)

 	vuk::ContextCreateParameters::FunctionPointers (C++ struct)

 	vuk::ContextCreateParameters::graphics_queue (C++ member)

 	vuk::ContextCreateParameters::graphics_queue_family_index (C++ member)

 	vuk::ContextCreateParameters::instance (C++ member)

 	vuk::ContextCreateParameters::physical_device (C++ member)

 	vuk::ContextCreateParameters::transfer_queue (C++ member)

 	vuk::ContextCreateParameters::transfer_queue_family_index (C++ member)

 	vuk::create_buffer (C++ function)

 	vuk::create_texture (C++ function)

 	vuk::DeviceFrameResource (C++ struct)

 	vuk::DeviceNestedResource (C++ struct)

 	vuk::DeviceResource (C++ struct)

 	vuk::DeviceSuperFrameResource (C++ struct)

 	vuk::DeviceVkResource (C++ struct)

 	vuk::download_buffer (C++ function)

 	vuk::ExecutableRenderGraph (C++ struct)

 	vuk::execute_submit_and_present_to_one (C++ function)

 	vuk::execute_submit_and_wait (C++ function)

 	vuk::Future (C++ class)

 	vuk::Future::Future (C++ function), [1], [2], [3]

 	vuk::Future::get (C++ function)

 	vuk::Future::get_control (C++ function)

 	vuk::Future::get_render_graph (C++ function)

 	vuk::Future::get_status (C++ function)

 	vuk::Future::submit (C++ function)

 	vuk::Future::wait (C++ function)

 	vuk::generate_mips (C++ function)

 	vuk::host_data_to_buffer (C++ function), [1]

 	vuk::host_data_to_image (C++ function)

 	vuk::link_execute_submit (C++ function)

 	vuk::Query (C++ struct)

 	vuk::RenderGraph (C++ struct)

 	vuk::RenderGraph::add_alias (C++ function)

 	vuk::RenderGraph::add_pass (C++ function)

 	vuk::RenderGraph::attach_and_clear_image (C++ function)

 	vuk::RenderGraph::attach_buffer (C++ function)

 	vuk::RenderGraph::attach_buffer_from_allocator (C++ function)

 	vuk::RenderGraph::attach_image (C++ function)

 	vuk::RenderGraph::attach_image_from_allocator (C++ function)

 	vuk::RenderGraph::attach_in (C++ function), [1]

 	vuk::RenderGraph::attach_swapchain (C++ function)

 	vuk::RenderGraph::clear_image (C++ function)

 	vuk::RenderGraph::converge_image_explicit (C++ function)

 	vuk::RenderGraph::diverge_image (C++ function)

 	vuk::RenderGraph::name (C++ member)

 	vuk::RenderGraph::release (C++ function)

 	vuk::RenderGraph::release_for_present (C++ function)

 	vuk::RenderGraph::resolve_resource_into (C++ function)

 	vuk::RenderGraph::split (C++ function)

 	vuk::Resource (C++ struct)

 	vuk::transition (C++ function)

 	vuk::Unique (C++ class)

 nav.xhtml

 Table of Contents

 		
 Welcome to vuk’s documentation!

 		
 Context

 		
 Submitting work

 		
 Allocators

 		
 Overview

 		
 Built-in resources

 		
 Helpers

 		
 Reference

 		
 Rendergraph

 		
 Futures

 		
 Composing render graphs

 		
 CommandBuffer

 		
 Setting pipeline state

 		
 Static and dynamic state

 		
 Binding pipelines & specialization constants

 		
 Binding descriptors & push constants

 		
 Vertex buffers and attributes

 		
 Command recording

 		
 Error handling

_static/plus.png

_static/file.png

_static/minus.png

